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Analysis of Energy Consumption for Ad Hoc Wireless
Sensor Networks Using a Bit-Meter-per-Joule

Metric
J. L. Gao1

In this article, we present a system-level characterization of the energy con-
sumption for sensor network application scenarios. We compute a power efficiency
metric—average watt-per-meter—for each radio transmission and extend this local
metric to find the global energy consumption. This analysis shows how overall en-
ergy consumption varies with transceiver characteristics, node density, data traffic
distribution, and base-station location.

I. Introduction

Energy consumption is one of the most important performance metrics for wireless ad hoc sensor
networks because it directly relates to the operational lifetime of the network. Most research efforts
are focused on performance comparisons and trade-off studies between various low-energy routing and
self-organization protocols, while keeping other system parameters fixed. As a result, very little has been
revealed about the relationship between the aggregate energy consumption and non-protocol parameters
such as node density, network coverage area, sensor traffic generation and distribution, and transceiver
power characteristics. In this article, we will explore the relationship between the non-protocol parameters
and the total energy consumption while adopting a very simple network layer/routing model that serves
as a benchmark for preliminary performance evaluation. We believe using such a generic protocol model
is suitable in the early phases of network planning and design.

In Section II, we describe the routing and transceiver power model used in our analysis. We then derive
the average watt-per-meter efficiency over a single hop in Section III. In Section IV, we combine this local
energy-efficiency metric with macro-scale parameters to compute the aggregate energy consumption for a
sensor network. Specifically, we examine how base-station position affects the energy consumption when
traffic generation is either uniformly or non-uniformly distributed; we also examine the effect of base-
station mobility. In Section V, we provide a brief discussion and analysis of the asymmetric distribution
of energy consumption among the sensors. In Section VI, we conclude this article with a summary of our
findings and other final remarks.

1 Mission and Systems Architecture Section.

The research described in this publication was carried out by the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics and Space Administration.
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II. Models Used for Our Analysis

A. Transceiver Power Model

In our power model, we assume a certain non-zero minimum level of power will be radiated regardless
of how short a link is. However, as the link distance increases, transmission power can be raised to
maintain communication reliability. On the receiving side, we assume a fixed amount of power is required
to capture the incoming radio signal. Therefore, the total power required for communicating over a
distance r is given by

p(r) = max {pmin, βrα} + prx (1)

The parameter α is the power index for channel path loss at the far field of the antenna; pmin is the
minimum transmitter power; β represents the minimum transmission power required to communicate at
a reference near-field distance of 1 meter; and prx is the fixed overhead for receiving data. Based on this
model, for all nodes closer than rpmin = (pmin/β)1/α, the power requirement is constant at pmin watts.

B. Node Location and Data Generation

We model the sensor distribution as a two-dimensional Poisson Field with constant mean and variance
of λ nodes/m2. Therefore, the probability distribution for the number of sensor nodes located within an
area of A m2 is given by

P
(
N (A) = k

)
=

(λA)k

k!
e−λA

and, within any given area, the location of each node is a uniformly distributed two-dimensional random
vector.

We envision that the total volume of data generated by each sensor is dependent on its ability to
observe and separate the signal generated by a phenomenon from the ambient noise. This ability will,
in general, depend on the relative position between a phenomenon and the sensor itself. A suitable
traffic-generation model will incorporate the location of the sensor as a parameter. In our analysis, we
model the volume of sensor data generated by each sensor as µ(x, y) (bits), where (x, y) is the location
of the sensor. The average traffic load, written as a function of the sensor location, is then given by the
expression ρ = λ · µ(x, y) bits/m2.

C. Sensor Network Architecture

The trend in sensor network deployment is to drive down costs and operational risks by diversification—
distributing resources and functionalities among a large number of small, low-cost, yet fairly capable
sensors rather than just a few large and expensive “super nodes” [4]. Diversification raises the “di-
mensionality” of the data set and thus reveals a whole new dimension of information about the sensed
phenomenon. Diversification also opens up a new realm of advanced signal processing techniques such as
data fusion and blind beam-forming [10] that greatly expanded the application domain of sensor networks.
While diversification promises new functionalities and improved performance, robustness, and economics
of sensor network deployment, it shrinks the size of each sensor to the point where constraints on both
energy resources and the physical dimension of the antenna make it inefficient to operate in a “star”
topology—where every sensor communicates directly with the end user. This is particularly true in a
remote sensing application where there is a great distance separating the sensors and the user.

One way to solve the sensor-to-user communication problem is cooperative communication [7], which
extends the effective transmission range of a sensor network by coordinating the modulation, coding,

2



power, data rates, and timing of multiple, simultaneous radio transmissions from the sensors. Another
more popular solution is to move from a star topology to a multi-hop “relay” topology using special
relay nodes, often called a base station. The base station is designed to be the communication gateway
between the sensors and the end user, thus allowing the sensors to operate using only short-range RF
communications. If the sensor-to-base station distance is short, then a star topology is locally feasible.
However, as a sensor network continues to grow in size, a multi-hop relay among the sensors is necessary
to connect every sensor with the base station.

In this article, we assume a sensor network under a relay architecture with a single base station, with
the traffic flow predominantly from the sensors to the base station.

D. Baseline Model of Location-Aware Routing Protocols

Many of today’s advanced energy-efficient routing protocols use location information to reduce energy
consumption. These include Geographical Routing [8], the Zone Routing Protocol [9], and the Most
Forward Within Radius [6]; other protocols, such as Power Aware Routing [5], compute a pathwise
or link-by-link power metric to derive the optimal routes. While energy minimization is the primary
design driver, secondary metrics, such as scalability, robustness, and adaptivity to dynamic topology, also
influenced network layer protocol.

In this analysis, we are not interested in evaluating the performance of any specific energy-efficient
protocols. However, we do need a baseline model so that our analysis can serve as a benchmark for
comparison with more sophisticated protocols. A good basic model should meet the following criteria:

(1) Define energy metrics in terms of the most basic and fundamental concepts.

(2) Incorporate location information in the routing decision.

(3) Use the most de-coupled and scalable approach in route computation.

The reason for making our model very simple is that frequently system performance is compared for
different levels of protocol complexity (or overhead). Such complexity is generally the result of adapting
to a particular scenario and its operating environment. As a higher degree of complexity is added, the
protocol generally becomes more adapted and performs better. Therefore, a baseline model should start
with the lowest degree of complexity.

For our baseline routing model, the decision metric is “power per meter,” defined as the power required
for communicating information reliably per unit distance toward the destination node. Another equivalent
metric is “joule per bit-meter,” which can be derived from the power-per-meter metric given that the
data rate is known. Joule per bit-meter is defined as the energy required to forward one data unit of
information reliably over one distance unit toward the destination node. Each sensor has the option of
communicating with a large number of neighbors, which ideally also include the base station itself. The
neighboring node whose power-per-meter metric is the optimal, i.e., the lowest, will be chosen to relay
the sensor data. However, if this optimal relay happens to be farther away than the base station itself,
then direct communication with the base station is preferred. Because this routing process strives to
make forward progress toward the base station, all multi-hop paths are loop-free. We make two further
assumptions regarding such a routing scheme: (1) the sensor nodes are location aware with respect
to the base station and all sensor nodes that can provide forward progress toward the base station, and
(2) the peak transmission power is unlimited—this assumption simplifies the mathematics of our analysis.

A final remark must be made regarding interference. Both the power model and our baseline routing
protocol do not account for the energy cost of managing and overcoming co-channel interference. We
assume that the channel-access mechanism is utilized to control interference overhead.
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III. Power Efficiency over a Single Hop

In this section, we will analyze the one-hop power efficiency as measured by the power-per-meter
metric. We will compute this metric over a single hop. In later sections, we will generalize it to compute
the total energy consumption for a sensor network.

A. The Watt-per-Meter Metric

We define the watt-per-meter metric as the average power required to reliably move information per
unit distance toward the eventual destination location. Figure 1 illustrates the general spatial relation
when node A wishes to send data to the base station via node B. Since the data A sends to B is destined
for the base station, the net forward progress, i.e., the net reduction of the distance to the base station,
is given by

D − d (B,base station) = D −
√(

D − r cos (θ)
)2 +

(
r sin (θ)

)2

� r cos (θ) when D � r (2)

For simplicity of analysis, we assume the base station is far away, i.e., D is quite large such that r cos (θ)
is a good approximation of the net forward progress. The watt-per-meter efficiency over link (A, B) with
respect to the base station can now be defined as

η(r, θ) =
p(r)

r cos (θ)
=

max {pmin, βrα} + prx

r cos (θ)
(3)

For a given r, η is strictly increasing function with respect to θ in the range (−π/2, π/2). For a given θ, η is
decreasing function for small r because the transmitter power is constant; as distance increases, however,
its power consumption will eventually grow as rα, and η will be increasing function of r eventually.

Let η∗(θ) and r∗(θ) be the minimum watt per meter and the corresponding transmission distance at
angle θ. Note that η is differentiable with respect to r > 0 except when βrα = pmin, which is r∗(θ) when
prx = 0. When prx > 0, r∗(θ) will increase and become a differentiable point, and can be derived by
finding the root of the derivative of η with respect to r. In summary, we have

r∗ (θ) =




(
pmin

β

)1/α

when
prx

α − 1
< pmin

(
prx

β (α − 1)

)1/α

when prx > 0,
prx

α − 1
≥ pmin




= r∗ (4)

and

A

B

B / SD

r
q

d (B , base station)

Fig. 1.  Routing at distance R from the base station.

4



η∗ = η (r∗, 0) (5)

One will notice that since r∗ is independent of θ, then

η∗ (θ) = η (r∗, θ) =
η (r∗, 0)
cos (θ)

=
η∗

cos (θ)
(6)

η∗ is the optimal efficiency that can be achieved given a relay neighbor is located precisely at distance
r∗ and in the same direction as the base station. However, when precise control of sensor position is not
possible, relay efficiency will degrade.

To achieve a watt-per-meter metric a > η∗, the maximum possible angular deviation is

θ′(a) = cos−1

(
η∗

a

)
(7)

For any relay neighbor at an angle larger than θ′(a), the watt-per-meter efficiency is strictly greater
than a. For any given watt-per-meter metric a and angle −θ′(a) < φ < θ′(a), a relay node can be located
at two possible distances, r′ and r′′:

r′(a, φ) = root of {η(r, φ) = a, a > η∗, r < r∗, φ < θ′(a)}

=




pmin + prx

a cos(φ)
, when a >

pmin + prx

cos(φ)
(

pmin

β

)1/α

real
root of

{
rα − r

a cos(φ)
β

+
prx

β
= 0, r < r∗, φ < θ′(a)

}
, when

pmin + prx

cos(φ)
(

pmin

β

)1/α
≥ a > η∗

(8)

r′′(a, φ) = root of {η(r, φ) = a, a > η∗, r > r∗, φ < θ′(a)}

=
real

root of

{
rα − r

a cos(φ)
β

+
prx

β
= 0, a > η∗, r > r∗, φ < θ′(a)

}

In summary, to achieve a watt-per-meter metric lower than a, a relay node’s angular deviation must be
less than θ′(a) in magnitude, and its distance must be bounded between r′(a, θ′(a)) and r′′(a, θ′(a)). This
defines for us a “relay zone” within which the watt-per-meter metric is less than a. We will discuss the
relationship of this relay zone to the average watt per meter of a relay network in later sections. Explicit
close-form solutions for r′ and r′′ can be found when α = 2, 3, 4 [1].

For any chosen relay, the watt-per-meter metric is a random variable H(D) that depends on the
distance, R; bearing, Θ; and distance to the base station, D. Given the sensor nodes form a Poisson field,
Θ will be a uniform random variable on (−π/2,+π/2), and R is bounded by D. If no better relay can
be found at a distance shorter than D, data will be transmitted directly to the base station.
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Without loss of generality, let us consider only positive values for Θ in the range [0, π/2). We also
assume that D is at least larger then r∗. Then we can compute the distribution of H(D) for a randomly
selected relay neighbor, if available, within radius D meters:

P
(
H(D) > a

)∣∣
a≥η∗ = P

(
H(D) > a|Θ ≤ θ′(a)

)
P

(
Θ ≤ θ′(a)

)
+ P

(
H(D) > a|Θ > θ′(a)

)︸ ︷︷ ︸
1

P
(
Θ > θ′(a)

)

=
∫ θ′(a)

0

P
(
H(D) > a|Θ = φ

)
· PΘ(φ) · dφ + P

(
Θ > θ′(a)

)

=
2
π

[∫ θ′(a)

0

P
( (

R < r′(a, φ)
)
∪

(
R > min {r′′(a, φ), D}

) )
· dφ +

(π

2
− θ′(a)

)]

(9)

=
2
π

[∫ θ′(a)

0

(
r′(a, φ)2

D2
+ 1 − min

{
r′′(a, φ)2, D2

}
D2

)
dφ +

(π

2
− θ′(a)

)]

= 1 − 2
πD2

∫ θ′(a)

0

(
min

{
r′′(a, φ)2, D2

}
− r′(a, φ)2

)
dφ

P
(
H(D) > a

)∣∣
a<η∗ = 1

But in our model, we assume that only the neighbor with the best watt-per-meter metric (i.e., the
lowest H) will be selected as the relay. So we define H∗(D) as the best watt-per-meter metric when the
base station is at a distance D meters. The number of available relay candidates is a Poisson random
variable N with mean λπD2/2 nodes/m2. Let I be the indicator function; then we have

P
(
H∗(D) > a

)

= I
(
η(D, 0) > a

)
P (N = 0)︸ ︷︷ ︸

direct comm. with base station

+
∞∑

i=1

P
(
H(D) > a

)i
P (N = i)

=
∞∑

i=0

P
(
H(D) > a

)i
e−λπD2/2

(λπD2/2)i

i! − I
(
η(D, 0) ≤ a

)
P (N = 0)

= exp

(
−λπD2

(
1 − P

(
H(D) > a

))
2

)
− I

(
βDα−1 ≤ a

)
exp

(−λπD2

2

)

=




exp
(
−λ

∫ θ′(a)

0

(
min

{
r′′(a, φ)2, D2

}
− r′(a, φ)2

)
dφ

)
− I

(
βDα−1 ≤ a

)
exp

(−λπD2

2

)
, if a > η∗

1, if a ≤ η∗

(10)
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When the base station is at the far field, we can take the limit of Eq. (10) as D approaches infinity. Then
we have

P (H∗ > a) = lim
D→∞

P
(
H∗(D) > a

)
=

{
exp

(
−λ

∫ θ′(a)

0

(
r′′(a, φ)2 − r′(a, φ)2

)
dφ

)
, if a > η∗

1, if a ≤ η∗
(11)

Since H∗ is a non-negative random variable, the expected value of the watt-per-meter metric for choosing
the best relay neighbor can be computed by

H̄∗ = E [H∗] =
∫ ∞

0

P (H∗ > a) da

= η∗ +
∫ ∞

η∗
exp

(
−λ

∫ θ′(a)

0

(
r′′ (a, φ)2 − r′ (a, φ)2

)
dφ

)
da (12)

If one knows the data rate of the radio channel, then one can calculate the bit-meter-per-joule metric
for the system. Let 1/τ be the transmission rate in bits per second. Then the bit-meter-per-joule metric
is simply given by

(
τ · H̄∗)−1. Equation (12) tells us that, when the node density is high, the average

watt-per-meter metric approaches its optimal value, i.e., H̄∗ � η∗ for large λ. If we examine Eqs. (4)
and (5), we can conclude that H̄∗ ∝ β1/α when the receiver overhead prx is small and λ is large. We also
observe that the receiver overhead has an effect on r∗, the optimal relay distance, only when it is larger
than (α − 1) pmin.

B. Numerical Example

In Subsection III.B, we provide a numerical example. We select large-scale path loss of the radio channel
with an exponent value between 2.5 and 4.5, as shown by near-ground channel measurement experiments
[2,3]. We assume at the close-in reference distance of 1 meter that the transmitter power required for
reliable communication is −80 dBW. This will give us a transmission range of about 110.7 meters at
1.5 watts for fourth-power loss. Data reception requires fixed power consumption at 100 mW, and the
transmitter has an adjustable power setting starting from a minimum level of −40 dBW.

Figure 2 shows η(r, φ) for φ ∈ [0, π/2) with a path loss exponent of α = 4. Each curve represents a
different value of φ. As φ increases, η increases monotonically. The minimum watt per meter, for each
φ, is achieved at the same distance r∗, which in our case is 42.7 meters.

Using a numerical method, we can compute the average watt-per-meter metric for different path losses
and node densities. Figure 3 shows that, as we increase density, H∗ approaches the optimal value, as
predicted by Eq. (12). We also see the strong effect of radio path loss. If we assume a transmission rate
of 10 kb/s, then we can plot the bit-meter-per-joule metric, i.e.,

(
τH̄∗)−1, as shown in Fig. 4.

We can see that in our example a factor of three separates the best bit-meter-per-joule performance
between a third- and fourth-power path-loss channel. That means, on average for each unit of energy
spend, the third-power path-loss channel can send three times more information over the same distance
or the same information over three times the distance than the same radio operating under fourth-power
path loss.

C. Geometry of the Relay Zone

The watt-per-meter metric is highly dependent on the geometry of the network, particularly the
position of the relay neighbors. If the relay node’s position deviates from the optimal location (i.e.,
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R = r∗ and Θ = 0), we can expect sub-optimal performance (i.e., E[H∗] > η∗). Two factors control the
degree of sensitivity of the watt-per-meter performance to the geometric randomness of the relay nodes:
(1) node density and (2) size of the relay zone.

A relay zone represents the region within which a given watt-per-meter performance can be achieved.
Having a large relay zone means a system is more tolerant of location deviation than others. Figure 5
shows the geometry of a relay zone for watt-per-meter performance better than or equal to a. The
distance to the far-side edge of the boundary is described by r′′(a, (φ); the distance to the near boundary
of the zone is given by r′(a, φ). The maximum angular width of the zone is given by twice the value of
θ′(a). For any given watt-per-meter efficiency, a, the area of the relay zone is given by
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x

y

Z(a) =
∫ θ′(a)

0

(
r′′ (a, φ)2 − r′ (a, φ)2

)
dφ (13)

Then we can computer the average number of relays that can achieve η∗ < H < a,

λZ(a) = λ

∫ θ′(a)

0

(
r′′ (a, φ)2 − r′ (a, φ)2

)
dφ (14)

Based on Eq. (12), we can rewrite the expected watt per meter as

H̄∗ = η∗ +
∫ ∞

η∗
e−λ·Z(a)da (15)

Equation (15) provides an easy geometric interpretation of the average watt-per-meter metric and its
relationship to node density and size of the relay zone.

D. Error Analysis

So far we have assumed that D is arbitrarily large to simplify our analysis. This provides us with a
far-field result on H∗. However, when D/r∗ is a finite value, r cos(θ) can become a poor estimate of the
net forward progress and produce overly optimistic results.

To derive a bound on the error caused by the simplified calculation of forward-progress distance,
we apply some heuristics. First we compute the position of a worst-case equivalent node (i.e., a node
with the largest angular deviation possible yet still achieving the same watt-per-meter metric E[H∗]
calculated under the far-field assumption). Using this equivalent node, we then compute its watt-per-
meter performance using the actual net forward progress given by Eq. (2).

Figure 6 shows the level of under-estimation of the E[H∗] when D/r∗ is finite. (Note that for a differ-
ent path-loss factor α, r∗ will change.) As D becomes smaller or the path-loss factor α becomes stronger,
the far-field result shows increasing error. For α = 4, the far-field result shows a 60 percent possibility of
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error; at twice r∗, the worst-case error is reduced to about 20 percent. As D/r∗ increases and path loss
lessens, the far-field estimate converges quickly to the actual value.

Note that we plotted only the error for D/r∗ > 1; this is because if D is equal to or less than r∗,
direct communication with the base station is always more advantageous than relay. The error analysis
shows us that the far-field average watt-per-meter metric provides a good tool for analyzing large sensor
networks because error is bounded within a small area compared to the total region of coverage.

IV. Total Energy Consumption in a Sensor Network

In a space/planetary mission, the prototypical scenario envisioned is a stationary multi-hop sensor
network connected to a base-station node, which gathers science data from each sensor. To compute the
average cumulative energy consumption in such a scenario, we need to estimate the energy required to
relay data from each sensor to a base station through a multi-hop path. We can derive this quantity
by multiplying the net distance traversed, i.e., the physical distance between each sensor and the base
station, with the watt-per-meter efficiency H̄∗ derived from our previous analysis. Let τ represent the
transmission time for a single bit of data, and define d to represent the net distance traveled toward the
base station; then the joule-per-bit cost over distance d can be estimated by

Ēb (d) ≈ τ · d · H̄∗ joules/bit (16)

Given that a sensor network is deployed uniformly within a region S and that it generates a traffic volume
of ρ = λ ·µ bit/m2, where λ is the node density and µ is the sensor data-generation volume per node, we
can approximate the total energy required to relay all data to a single node located at point c ∈ S:

Etotal(c) =
∫

S

Ēb (|s − c|) ρ · ds

= τH̄∗ρ

∫
S

|s − c| · ds joules (17)
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This energy formula can be further generalized to accommodate non-uniform traffic ρ (s) =
λ · µ(s) bits/m2, where the sensor data-generation volume per node depends on the sensor’s location.
Then we have

Etotal(c) =
∫

S

Ēb (|s − c|) ρ(s) · ds

= τH̄∗λ

∫
S

|s − c|µ(s) · ds joules (18)

Note that the relationship between Etotal(c) and λ is stronger than linear, because H̄∗ itself is a strong
function of λ.

A. Analysis of a Sensor Network Deployed in a Square Region

In this subsection, we redefine D as the dimension of the square region covered by a sensor network.
The volume of data generated per unit area is ρ = λµ bits/m2. Data bits are relayed to a single base
station at location (xc, yc), as shown in Fig. 7.

The total energy to relay all data can be computed by

Esqr,D (xc, yc) =
∫ D/2

−D/2

∫ D/2

−D/2

Ēbm

(√
(x − xc)

2 + (y − yc)
2

)
· ρ · dx · dy

=
∫ D/2−yc

−D/2−yc

∫ D−xc

−D/2−xc

Ēbm

(√
x2 + y2

)
· ρ · dx · dy

≤ τH̄∗ρ

∫ D/2−yc

−D/2−yc

∫ D/2−xc

−D/2−xc

√
x2 + y2 · dx · dy (19)

To simplify notation, let ax = −D/2−xc, bx = D/2−xc, ay = −D/2−yc, and by = D/2−yc. We define
a function F (x, y) such that

D

D

(Xc , Yc )

(0,0)

Fig. 7.  Sensor network in a square
region.
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Fx(x, y) =
∂F (x, y)

∂x

Fy(x, y) =
∂F (x, y)

∂y

Fxy (x, y) =
∂2F (x, y)

∂x∂y
=

√
x2 + y2

There is no unique F (x, y), and one possible candidate is the following expression:

F (x, y) = −x3

18
+

1
3
xy

√
x2 + y2 +

1
6
y3 log

[
x +

√
x2 + y2

]
+

1
6
x3 log

[
y +

√
x2 + y2

]
︸ ︷︷ ︸

F̃ (x,y)=F̃ (y,x)

(20)

Then we have

Esqr,D(xc, yc) ≤ τH̄∗ρ

∫ by

ay

∫ bx

ax

Fxy(x, y) · dx · dy

= τH̄∗ρ

∫ by

ay

[
Fy(bx, y) − Fy(ax, y)

]
· dy

= τH̄∗ρ
[
F (bx, by) − F (ax, by) − F (bx, ay) + F (ax, ay)

]

= τH̄∗ρ
[
F̃ (bx, by) − F̃ (ax, by) − F̃ (bx, ay) + F̃ (ax, ay)

]
(21)

In the special case where the base station is in the center of the region, we have a = ax = ay = −D/2
and b = bx = by = D/2 = −a. Then

Esqr,D (0, 0) = τH̄∗ρ
[
F̃ (b, b) − F̃ (−b, b) − F̃ (b,−b) + F̃ (−b,−b)

]

= τH̄∗ρb3

(
4
√

2
3

+
2
3

log

(√
2 + 1√
2 − 1

))

= τH̄∗ρD3

(
1

3
√

2
+

1
12

log

(√
2 + 1√
2 − 1

))
(22)

and the average joules/bit is given by

Ebit,D (0, 0) =
Esqr,D (0, 0)

no. of data bits sent = ρD2
= τH̄∗D

(
1

3
√

2
+

1
12

log

(√
2 + 1√
2 − 1

))
(23)
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Note that the total energy consumption increases as the third power of the dimension of the region, and
linearly with the traffic density. If we consider the joules/bit performance, we see the energy efficiency is
inversely proportional to the dimension of the square region. Although λ is not an explicit parameter in
Eq. (23), its effect is implicit through the average watts/meter metric H̄∗.

Back to the calculation of the total energy consumption, let’s assume xc = yc = ∆/
√

2, i.e., the
base station is at distance ∆ meters from the origin and on the diagonal line connecting the origin to
the upper-right-hand corner. Let a = −D/2 − ∆/

√
2 and b = D/2 − ∆/

√
2. Then the total energy

consumption as a function of D and ∆ is given by

Ediag (D,∆) = Esqr,D

(
∆√
2
,

∆√
2

)
= τH̄∗ρ

[
F̃ (b, b) − 2F̃ (a, b) + F̃ (a, a)

]
︸ ︷︷ ︸

∼O(D3)

joules (24)

B. Case of a Stationary Base Station

We now apply the square region analysis to a single-base-station scenario using specific numeric values
for each parameter. We look at both uniform and non-uniform traffic distribution, and also extend the
scenario to that of a mobile base station.

1. Uniform Traffic Distribution—A Numerical Example. We assume a transmission rate of
10 kb/s and a path-loss exponent of 4.0. Using the same transceiver parameters as in Subsection III.B,
the watt-per-meter performance is 4.218 × 10−3 watts/meter (or, equivalently, 237.08 meters/watt). We
assume λ = 545/1 km2. Each node will send a total of 106 bits of data to the base station. We compute
the total energy required for relaying data to the base station as a function of the size of the square
region; we also look at the total energy increase if the base station is off-center by ∆ meters along the
diagonal line toward one of the four corners of the region.

Figure 8 shows that on average 8.617 mega-joules are required to relay 13.625 gigabits to the base
station, or, equivalently, 6.324 × 10−4 joules/bit. The total energy consumption increases as the third
power with respect to D and also is increasing strongly with ∆. If the base station is moved to the corner
of the region, then the energy consumption will nearly double to 1.723× 107 joules—equivalent to having

jo
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4   106
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Fig. 8.  Effect of network dimension and base-
station location on energy.
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a network that is 58 percent larger (in terms of physical coverage area, keeping the density fixed) at the
same traffic density with a centered base station. In Fig. 9, we plot the total energy consumption as
a function of the location of the base station for the same square region. It is clear that the minimum
consumption level is achieved when the base station is at the center of the square region.

2. Non-Uniform Traffic Generation. For cases where traffic distribution is non-uniform, ad-
justment must be made to the base-station location to minimize energy consumption. To study the
sensitivity of base-station location to non-uniform traffic, we use a tent-shaped function to model the
volume of traffic generated from each node, based on its location:

µ (x, y) =
109

1 +
1
dh

√
(x − xoffset)

2 + y2

bits/node (25)

The total traffic volume generated by each node is inversely proportional to its distance from (xoffset, 0),
and the maximum is 109 bits/node. The parameter dh is the distance at which the traffic level is reduced
by 50 percent. Using the same node density of 545 nodes per square kilometer, we have

ρ (x, y) = λ · µ (x, y) =
545 × 103

1 +
1
dh

√
(x − xoffset)

2 + y2

bits/m2 (26)

Intuitively, we expect the optimal base-station location will be shifted from the center of the square
region toward (xoffset, 0). Because no close-form solution is available for a non-constant traffic distribution
λ (x, y), numerical integration is applied to compute the optimal base-station location that produces the
minimum energy consumption.

We can observe that the optimal base-station position on the x-axis does not shift as much as xoffset; in
fact, the shift is decreasing percentage-wise as the point of traffic concentration moves farther away from
the origin. This is because the relaying cost on the far side of the network also becomes significant as
the base station moves further away from the center. Another parameter that can influence the optimal
base-station location is dh, which controls the level of traffic concentration near (xoffset, 0). Larger dh

means less traffic concentration, therefore less base-station movement. In Fig. 10, we see that at dh = 5
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Fig. 9.  Total energy (in joules) to collect all sensor
data as a function of base-station location.
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Fig. 10.  Sensitivity of the optimal base-station location to
traffic distribution.

the base-station movement is between 65 to 80 percent of xoffset; for dh = 2500, the base-station movement
is only from 22 to 30 percent of xoffset. In general, we can say that the optimal base-station location under
non-uniform traffic density needs to be adjusted toward the “hot spot.” The degree of adjustment depends
both on how far the traffic peak location is from the center and on the degree of traffic concentration.

C. Case of a Mobile Base Station

In the last subsection, we have shown that the physical dimension of the network can exercise a strong
influence on the total energy consumption. To reduce the adverse effect of a large network, we can
partition the network into several smaller sub-networks and use a mobile base station to periodically visit
and retrieve data from each sub-network. By allowing the base station to move, we reduced the effective
physical dimension of the network while providing the same sensor coverage. As shown in Fig. 11, consider
dividing the same D meters-by-D meters region into N2 equally sized square regions and using a mobile
base station to retrieve data from the center of each region. Then the total energy consumption due to
radio communication shows an N -fold reduction:

Emobile,N2 (D) = N2Esqr,D/N (0, 0)

= N2τH̄∗ρ

(
D

N

)3
(

1
3
√

2
+

1
12

log

(√
2 + 1√
2 − 1

))

=
Esqr,D (0, 0)

N
(27)

The reduction of transmission energy by a factor of N requires the base station to travel a minimum
distance of N · D meters to visit every sub-network. So, we have a trade-off between the cost of base-
station mobility and sensor radio communications. While it is probably true that mobility is in general
more costly than communications, mobility may be feasible if we can take advantage of the fact that
the base station usually carries more energy resources and has the ability to acquire additional energy
resources from the environment (i.e., solar or wind power).
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Fig. 11.  Partitioned network with mobile
base station.

In recent years, a clustering algorithm has been developed to simplify network organization by desig-
nating a few nodes as the “cluster head.” A cluster-head node functions as the router for nearby sensors
and therefore creates a logical partition of the network into small sub-networks called clusters. However,
logical partitions, in general, do not reduce the energy consumption because inter-cluster communication
is still required to forward data to the base station; there is no net reduction in the average physical
distance between each sensor and the base station. Rather, a clustering architecture improves energy
efficiency by load balancing [11] and mobility management.

V. Asymmetric Distribution of Energy Consumption

Knowing the total energy consumption allows a simple calculation of average required energy reserve
for each sensor. However, due to the asymmetry of traffic flow (i.e., most information converges toward
the base station), the actual energy consumption required for each sensor may depend, very significantly,
on its distance from the base station. Research in sensor networks has indicated that the performance
bottleneck usually is located near the base station, where demand for communication bandwidth and
power is highest due to concentration of relay activity.

To compute the asymmetric distribution of energy consumption, we consider, for mathematical con-
venience, a sensor network deployed within a circular region with diameter D, as shown in Fig. 12, with
the base station placed in the center. Let us assume that λ and µ are both constant; then we know that
total energy consumption is given by

Ecir(D) = ρτH̄∗
∫
{|s−c|≤D/2,c= origin}

|s − c| ds

= ρτH̄∗
∫ 2π

0

[∫ D/2

0

r · r · dr

]
· dφ

= ρτH̄∗π
D3

12
(28)
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D / 2
d / 2

Fig. 12.  A sensor network in a circular region.

We can also compute the total energy consumption for a sub-network located within a concentric circle
with diameter d < D. There are two parts to this computation. The first part accounts for handling data
that originated within the sub-network; the second part accounts for relaying data that originated from
outside the sub-network. Thus, we have

Ecir (d, D) = ρτH̄∗π
d3

12︸ ︷︷ ︸
energy consumption
incurred by traffic
generated internally

+ ρπ

(
D2

4
− d2

4

)
︸ ︷︷ ︸

traffic volume originated
outside the subnetwork

d

2︸︷︷︸
relay

distance

τH̄∗

= ρτH̄∗π

[
D2d

4
− d3

6

]
(29)

We can now compute the average per node energy burden as a function of d:

Ēnode (d, D) = µτH̄∗
(

D2

d
− 2d

3

)
(30)

Let us normalize the localized average per node energy burden Ēnode(d, D) by the global average
Ēnode(D, D). Define δ = d/D; then we have

Ēnode norm (δ) =
Ēnode(d, D)
Ēnode(D, D)

=
[
3
δ
− 2δ

]
, where

r∗

D
≤ δ ≤ 1 (31)

Figure 13 shows the normalized average energy burden for a sub-network whose radius is δ × D. One
can see that there is a pronounced imbalance in energy consumption. For nodes located very close to
the base station, the average burden is very high. If we consider the neighbor whose radius is only 1/10
of the radius of the entire area, the energy burden within this small sub-network is 30 times the global
average. There is in general a lower limit for δ = d/D, since d represents, at the minimum, the average
radius of the 1-hop neighborhood of the base station. A reasonable number to choose for the minimum d
would be r∗.

Several strategies can be used to handle the imbalance of energy consumption among the sensor nodes.
The simplest approach is to increase node density or provision more energy resources per sensor near the
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base station. If mobility is an option, intelligent movement of the base station also can balance energy
consumption. Another possibility is to actively shape the traffic volume near the base station by either
filtering out redundant information or compressing data as they are relayed closer to the base station.

VI. Conclusion

We have presented a system-level performance characterization of the energy consumption for ad hoc
wireless sensor networks. We began by defining the routing, channel, and transceiver power model
appropriate in the application domain of a wireless sensor network using radio frequency (RF)-based
communication technology. We then derived the bit-meter-per-joule metric over a single radio link. The
bit-meter-per-joule metric was then applied to obtain a macro-scale approximation of the total energy
consumption required by a sensor network based on the physical coverage, the location of the base station,
the node density, and the traffic-generation volume. We specifically looked at the performance of a sensor
network deployed in a square region with a single stationary or mobile base station. We made the following
observations regarding energy-efficient sensor network operation:

(1) The optimal relay distance is controlled by the trade-off between the propagation path
loss and the fixed energy overhead for operating the transceiver. Under adverse channel
conditions, a watt-per-meter metric favors short relays; thus, high node density is required.

(2) The optimal base-station location is near the center of the network if the traffic distri-
bution is uniform; otherwise, it tends to shift toward the location where traffic is most
concentrated—the degree of shift depends on the degree of traffic concentration and its
peak location.

(3) If the base station is mobile, using small clusters or sub-networks of sensors rather than one
large connected network can reduce communication cost while providing sensor coverage
over the same physical area. However, the base station will pick up the additional cost of
mobility.

(4) The average energy consumption is much higher for sensors located near the base station
than for those on the outer edge of the network. This imbalance can adversely affect
the connectivity and operation lifetime of the network. Techniques such as preferential
resource provisioning (i.e., increasing node density or increasing energy resources near
the base station), network partitioning (using a mobile base station to visit each sub-
network sequentially), and information aggregation and compression can help offset such
an imbalance.
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